The goal of the {dm} package and the dm
class that comes with it, is to make your life easier when you are dealing with data from several different tables.
Let’s take a look at the dm
class.
Class dm
The dm
class consists of a collection of tables and metadata about the tables, such as
- the names of the tables
- the names of the columns of the tables
- the primary and foreign keys of the tables to link the tables together
- the data (either as data frames or as references to database tables)
All tables in a dm
must be obtained from the same data source; csv files and spreadsheets would need to be imported to data frames in R.
Examples of dm
objects
There are currently three options available for creating a dm
object. The relevant functions for creating dm
objects are:
To illustrate these options, we will now create the same dm
in several different ways. We can use the tables from the well-known {nycflights13} package.
Pass the tables directly
Create a dm
object directly by providing data frames to dm()
:
library(nycflights13)
library(dm)
dm(airlines, airports, flights, planes, weather)
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `weather`
#> Columns: 53
#> Primary keys: 0
#> Foreign keys: 0
Start with an empty dm
Start with an empty dm
object that has been created with dm()
or new_dm()
, and add tables to that object:
library(nycflights13)
library(dm)
empty_dm <- dm()
empty_dm
#> dm()
dm(empty_dm, airlines, airports, flights, planes, weather)
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `weather`
#> Columns: 53
#> Primary keys: 0
#> Foreign keys: 0
Coerce a list of tables
Turn a named list of tables into a dm
with as_dm()
:
as_dm(list(
airlines = airlines,
airports = airports,
flights = flights,
planes = planes,
weather = weather
))
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `weather`
#> Columns: 53
#> Primary keys: 0
#> Foreign keys: 0
Turn tables from a src
into a dm
Squeeze all (or a subset of) tables belonging to a src
object into a dm
using dm_from_con()
:
sqlite_con <- dbplyr::nycflights13_sqlite()
flights_dm <- dm_from_con(sqlite_con)
flights_dm
#> ── Table source ───────────────────────────────────────────────────────────
#> src: sqlite 3.39.4 [/tmp/RtmpAqjwYV/nycflights13.sqlite]
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `sqlite_stat1`, … (7 total)
#> Columns: 62
#> Primary keys: 0
#> Foreign keys: 0
The function dm_from_con(con, table_names = NULL)
includes all available tables on a source in the dm
object. This means that you can use this, for example, on a postgres database that you access via DBI::dbConnect(RPostgres::Postgres())
(with the appropriate arguments dbname
, host
, port
, …), to produce a dm
object with all the tables on the database.
Low-level construction
Another way of creating a dm
object is calling new_dm()
on a list of tbl
objects:
base_dm <- new_dm(list(
airlines = airlines,
airports = airports,
flights = flights,
planes = planes,
weather = weather
))
base_dm
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `weather`
#> Columns: 53
#> Primary keys: 0
#> Foreign keys: 0
This constructor is optimized for speed and does not perform integrity checks. Use with caution, validate using dm_validate()
if necessary.
dm_validate(base_dm)
Access tables
We can get the list of tables with dm_get_tables()
and the src
object with dm_get_con()
.
In order to pull a specific table from a dm
, use:
flights_dm[["airports"]]
#> # Source: table<`airports`> [?? x 8]
#> # Database: sqlite 3.39.4 [/tmp/RtmpAqjwYV/nycflights13.sqlite]
#> faa name lat lon alt tz dst tzone
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A Amer…
#> 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A Amer…
#> 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A Amer…
#> 4 06N Randall Airport 41.4 -74.4 523 -5 A Amer…
#> 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A Amer…
#> 6 0A9 Elizabethton Municipal Airpo… 36.4 -82.2 1593 -5 A Amer…
#> 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A Amer…
#> 8 0G7 Finger Lakes Regional Airport 42.9 -76.8 492 -5 A Amer…
#> 9 0P2 Shoestring Aviation Airfield 39.8 -76.6 1000 -5 U Amer…
#> 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A Amer…
#> # … with more rows
But how can we use {dm}-functions to manage the primary keys of the tables in a dm
object?
Primary keys of dm
objects
Some useful functions for managing primary key settings are:
If you created a dm
object according to the examples in “Examples of dm
objects”, your object does not yet have any primary keys set. So let’s add one.
We use the nycflights13
tables, i.e. flights_dm
from above.
dm_has_pk(flights_dm, airports)
#> [1] FALSE
flights_dm_with_key <- dm_add_pk(flights_dm, airports, faa)
flights_dm_with_key
#> ── Table source ───────────────────────────────────────────────────────────
#> src: sqlite 3.39.4 [/tmp/RtmpAqjwYV/nycflights13.sqlite]
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `sqlite_stat1`, … (7 total)
#> Columns: 62
#> Primary keys: 1
#> Foreign keys: 0
The dm
now has a primary key:
dm_has_pk(flights_dm_with_key, airports)
#> [1] TRUE
To get an overview over all tables with primary keys, use dm_get_all_pks()
:
dm_get_all_pks(flights_dm_with_key)
#> # A tibble: 1 × 2
#> table pk_col
#> <chr> <keys>
#> 1 airports faa
Remove a primary key:
If you still need to get to know your data better, and it is already available in the form of a dm
object, you can use the dm_enum_pk_candidates()
function in order to get information about which columns of the table are unique keys:
dm_enum_pk_candidates(flights_dm_with_key, airports)
#> # A tibble: 8 × 3
#> columns candidate why
#> <keys> <lgl> <chr>
#> 1 faa TRUE ""
#> 2 lon TRUE ""
#> 3 name FALSE "has duplicate values: Municipal Airport (5), All Airp…
#> 4 lat FALSE "has duplicate values: 38.88944 (2), 40.63975 (2)"
#> 5 alt FALSE "has duplicate values: 0 (51), 13 (13), 14 (12), 15 (1…
#> 6 tz FALSE "has duplicate values: -5 (521), -6 (342), -9 (240), -…
#> 7 dst FALSE "has duplicate values: A (1388), U (47), N (23)"
#> 8 tzone FALSE "has duplicate values: America/New_York (519), America…
The flights
table does not have any one-column primary key candidates:
dm_enum_pk_candidates(flights_dm_with_key, flights) %>% dplyr::count(candidate)
#> # A tibble: 1 × 2
#> candidate n
#> <lgl> <int>
#> 1 FALSE 19
dm_add_pk()
has a check
argument. If set to TRUE
, the function checks if the column of the table given by the user is unique. For performance reasons, the default is check = FALSE
. See also [dm_examine_constraints()] for checking all constraints in a dm
.
Foreign keys
Useful functions for managing foreign key relations include:
Now it gets (even more) interesting: we want to define relations between different tables. With the dm_add_fk()
function you can define which column of which table points to another table’s column.
This is done by choosing a foreign key from one table that will point to a primary key of another table. The primary key of the referred table must be set with dm_add_pk()
. dm_add_fk()
will find the primary key column of the referenced table by itself and make the indicated column of the child table point to it.
#> ── Table source ───────────────────────────────────────────────────────────
#> src: sqlite 3.39.4 [/tmp/RtmpAqjwYV/nycflights13.sqlite]
#> ── Metadata ───────────────────────────────────────────────────────────────
#> Tables: `airlines`, `airports`, `flights`, `planes`, `sqlite_stat1`, … (7 total)
#> Columns: 62
#> Primary keys: 1
#> Foreign keys: 1
This will throw an error:
try(
flights_dm %>% dm_add_fk(flights, origin, airports)
)
#> Error in abort_ref_tbl_has_no_pk(ref_table_name) :
#> ref_table `airports` needs a primary key first. Use `dm_enum_pk_candidates()` to find appropriate columns and `dm_add_pk()` to define a primary key.
Let’s create a dm
object with a foreign key relation to work with later on:
flights_dm_with_fk <- dm_add_fk(flights_dm_with_key, flights, origin, airports)
What if we tried to add another foreign key relation from flights
to airports
to the object? Column dest
might work, since it also contains airport codes:
try(
flights_dm_with_fk %>% dm_add_fk(flights, dest, airports, check = TRUE)
)
#> Error in abort_not_subset_of(table_name, col_name, ref_table_name, ref_col_name) :
#> Column (`dest`) of table `flights` contains values (see examples above) that are not present in column (`faa`) of table `airports`.
Checks are opt-in and executed only if check = TRUE
. You can still add a foreign key with the default check = FALSE
. See also dm_examine_constraints()
for checking all constraints in a dm
.
Get an overview of all foreign key relations withdm_get_all_fks()
:
dm_get_all_fks(dm_nycflights13(cycle = TRUE))
#> # A tibble: 5 × 5
#> child_table child_fk_cols parent_table parent_key_cols on_delete
#> <chr> <keys> <chr> <keys> <chr>
#> 1 flights carrier airlines carrier no_action
#> 2 flights origin airports faa no_action
#> 3 flights dest airports faa no_action
#> 4 flights tailnum planes tailnum no_action
#> 5 flights origin, time_hour weather origin, time_hour no_action
Remove foreign key relations with dm_rm_fk()
(parameter columns = NULL
means that all relations will be removed, with a message):
try(
flights_dm_with_fk %>%
dm_rm_fk(table = flights, column = dest, ref_table = airports) %>%
dm_get_all_fks(c(flights, airports))
)
#> Error in abort_is_not_fkc() : No foreign keys to remove.
flights_dm_with_fk %>%
dm_rm_fk(flights, origin, airports) %>%
dm_get_all_fks(c(flights, airports))
#> # A tibble: 0 × 5
#> # … with 5 variables: child_table <chr>, child_fk_cols <keys>,
#> # parent_table <chr>, parent_key_cols <keys>, on_delete <chr>
flights_dm_with_fk %>%
dm_rm_fk(flights, columns = NULL, airports) %>%
dm_get_all_fks(c(flights, airports))
#> Removing foreign keys: %>%
#> dm_rm_fk(flights, origin, airports)
#> # A tibble: 0 × 5
#> # … with 5 variables: child_table <chr>, child_fk_cols <keys>,
#> # parent_table <chr>, parent_key_cols <keys>, on_delete <chr>
Since the primary keys are defined in the dm
object, you do not usually need to provide the referenced column name of ref_table
.
Another function for getting to know your data better (cf. dm_enum_pk_candidates()
in “Primary keys of dm
objects”) is dm_enum_fk_candidates()
. Use it to get an overview over foreign key candidates that point from one table to another:
dm_enum_fk_candidates(flights_dm_with_key, weather, airports)
#> # A tibble: 15 × 3
#> columns candidate why
#> <keys> <lgl> <chr>
#> 1 origin TRUE ""
#> 2 year FALSE "values of `weather$year` not in `airports$faa`: 2…
#> 3 month FALSE "values of `weather$month` not in `airports$faa`: …
#> 4 day FALSE "values of `weather$day` not in `airports$faa`: 3 …
#> 5 hour FALSE "values of `weather$hour` not in `airports$faa`: 1…
#> 6 temp FALSE "values of `weather$temp` not in `airports$faa`: 3…
#> 7 dewp FALSE "values of `weather$dewp` not in `airports$faa`: 2…
#> 8 humid FALSE "values of `weather$humid` not in `airports$faa`: …
#> 9 wind_dir FALSE "values of `weather$wind_dir` not in `airports$faa…
#> 10 wind_speed FALSE "values of `weather$wind_speed` not in `airports$f…
#> 11 wind_gust FALSE "values of `weather$wind_gust` not in `airports$fa…
#> 12 precip FALSE "values of `weather$precip` not in `airports$faa`:…
#> 13 pressure FALSE "values of `weather$pressure` not in `airports$faa…
#> 14 visib FALSE "values of `weather$visib` not in `airports$faa`: …
#> 15 time_hour FALSE "values of `weather$time_hour` not in `airports$fa…